Distinguishing surface and bulk electromagnetism via their dynamics in an intrinsic magnetic topological insulator

Author:

Nguyen Khanh Duy1ORCID,Lee Woojoo1ORCID,Dang Jianchen2,Wu Tongyao2,Berruto Gabriele1,Yan Chenhui1ORCID,Ip Chi Ian Jess1ORCID,Lin Haoran1,Gao Qiang1ORCID,Lee Seng Huat3ORCID,Yan Binghai4ORCID,Liu Chaoxing3ORCID,Mao Zhiqiang3ORCID,Zhang Xiao-Xiao2ORCID,Yang Shuolong1ORCID

Affiliation:

1. Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.

2. Department of Physics, University of Florida, Gainesville, FL 32611, USA.

3. Department of Physics, Pennsylvania State University, University Park, PA 16802, USA.

4. Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.

Abstract

The indirect exchange interaction between local magnetic moments via surface electrons has been long predicted to bolster the surface ferromagnetism in magnetic topological insulators (MTIs), which facilitates the quantum anomalous Hall effect. This unconventional effect is critical to determining the operating temperatures of future topotronic devices. However, the experimental confirmation of this mechanism remains elusive, especially in intrinsic MTIs. Here, we combine time-resolved photoemission spectroscopy with time-resolved magneto-optical Kerr effect measurements to elucidate the unique electromagnetism at the surface of an intrinsic MTI MnBi 2 Te 4 . Theoretical modeling based on 2D Ruderman-Kittel-Kasuya-Yosida interactions captures the initial quenching of a surface-rooted exchange gap within a factor of two but overestimates the bulk demagnetization by one order of magnitude. This mechanism directly explains the sizable gap in the quasi-2D electronic state and the nonzero residual magnetization in even-layer MnBi 2 Te 4 . Furthermore, it leads to efficient light-induced demagnetization comparable to state-of-the-art magnetophotonic crystals, promising an effective manipulation of magnetism and topological orders for future topotronics.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3