Grid-based methods for chemistry simulations on a quantum computer

Author:

Chan Hans Hon Sang1ORCID,Meister Richard1ORCID,Jones Tyson1ORCID,Tew David P.23,Benjamin Simon C.14ORCID

Affiliation:

1. Department of Materials, University of Oxford, Oxford OX1 3PH, UK.

2. Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK.

3. Duality Quantum Photonics, 6 Lower Park Row, Bristol BS1 5BJ, UK.

4. Quantum Motion, 9 Sterling Way, London N7 9HJ, UK.

Abstract

First-quantized, grid-based methods for chemistry modeling are a natural and elegant fit for quantum computers. However, it is infeasible to use today’s quantum prototypes to explore the power of this approach because it requires a substantial number of near-perfect qubits. Here, we use exactly emulated quantum computers with up to 36 qubits to execute deep yet resource-frugal algorithms that model 2D and 3D atoms with single and paired particles. A range of tasks is explored, from ground state preparation and energy estimation to the dynamics of scattering and ionization; we evaluate various methods within the split-operator QFT (SO-QFT) Hamiltonian simulation paradigm, including protocols previously described in theoretical papers and our own techniques. While we identify certain restrictions and caveats, generally, the grid-based method is found to perform very well; our results are consistent with the view that first-quantized paradigms will be dominant from the early fault-tolerant quantum computing era onward.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3