Solid state–like high harmonic generation from cluster molecules with rotational periodicities

Author:

Peng Yigeng1ORCID,Wu Tong1,Yuan Guanglu1,Chi Lihan1,Jiang Shicheng12ORCID,Dorfman Konstantin2345ORCID,Yu Chao1ORCID,Lu Ruifeng16ORCID

Affiliation:

1. Institute of Ultrafast Optical Physics, Department of Applied Physics, and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, China.

2. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.

3. Center for Theoretical Physics and School of Sciences, Hainan University, Haikou 570228, China.

4. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China.

5. Himalayan Institute for Advanced Study, Unit of Gopinath Seva Foundation, MIG 38, Avas Vikas, Rishikesh, Uttarakhand 249201, India.

6. State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Abstract

High harmonic generation (HHG) from solid-state crystals in strong laser fields has been understood by the band structure of the solids, which is based on the periodic boundary condition (PBC) due to translational invariance. For the systems with PBC due to rotational invariance, an analogous Bloch theorem can be applied. Considering a ring-type cluster of cyclo[18]carbon as an example, we develop a quasi-band model and predict the solid state–like HHG in this system. Under the irradiation of linearly polarized laser field, cyclo[18]carbon exhibits solid state–like HHG originated from intraband oscillations and interband transitions, which, in turn, is promising to optically detect the symmetry and geometry of molecular or material structures. Our results based on the Liouville–von Neumann equations are well reproduced by the time-dependent density functional theory calculations and are foundational in providing a connection linking the HHG physics of gases and solids.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3