Transferable learning on analog hardware

Author:

Vadlamani Sri Krishna1ORCID,Englund Dirk1ORCID,Hamerly Ryan12ORCID

Affiliation:

1. Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

2. NTT Research Inc., Sunnyvale, CA 94085, USA.

Abstract

While analog neural network (NN) accelerators promise massive energy and time savings, an important challenge is to make them robust to static fabrication error. Present-day training methods for programmable photonic interferometer circuits, a leading analog NN platform, do not produce networks that perform well in the presence of static hardware errors. Moreover, existing hardware error correction techniques either require individual retraining of every analog NN (which is impractical in an edge setting with millions of devices), place stringent demands on component quality, or introduce hardware overhead. We solve all three problems by introducing one-time error-aware training techniques that produce robust NNs that match the performance of ideal hardware and can be exactly transferred to arbitrary highly faulty photonic NNs with hardware errors up to five times larger than present-day fabrication tolerances.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference59 articles.

1. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play

2. T. Brown B. Mann N. Ryder M. Subbiah J. D. Kaplan P. Dhariwal A. Neelakantan P. Shyam G. Sastry A. Askell S. Agarwal A. Herbert-Voss G. Krueger T. Henighan R. Child A. Ramesh D. Ziegler J. Wu C. Winter C. Hesse M. Chen E. Sigler M. Litwin S. Gray B. Chess J. Clark C. Berner S. McCandlish A. Radford I. Sutskever D. Amodei Language models are few-shot learners. Advances in Neural Information Processing Systems vol. 33 H. Larochelle M. Ranzato R. Hadsell M. F. Balcan H. Lin Eds. (Curran Associates Inc. 2020) pp. 1877–1901.

3. A. Ramesh P. Dhariwal A. Nichol C. Chu M. Chen Hierarchical text-conditional image generation with CLIP Latents. arXiv:2204.06125 (2022). https://doi.org/10.48550/arXiv.2204.06125.

4. Highly accurate protein structure prediction with AlphaFold

5. A. Reuther P. Michaleas M. Jones V. Gadepally S. Samsi J. Kepner AI accelerator survey and trends. 2021 IEEE High Performance Extreme Computing Conference (HPEC) (IEEE 2021) pp. 1–9.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3