Membrane-proximal motifs encode differences in signaling strength between type I and III interferon receptors

Author:

Mesev Emily V.1ORCID,Lin Aaron E.1ORCID,Guare Emma G.1,Heller Brigitte L.1ORCID,Douam Florian23ORCID,Adamson Britt14ORCID,Toettcher Jared E.15ORCID,Ploss Alexander1ORCID

Affiliation:

1. Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.

2. Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA.

3. National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA.

4. Lewis Sigler Center for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.

5. Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA.

Abstract

Interferons (IFNs) play crucial roles in antiviral defenses. Despite using the same Janus-activated kinase (JAK)–signal transducer and activator of transcription (STAT) signaling cascade, type I and III IFN receptors differ in the magnitude and dynamics of their signaling in terms of STAT phosphorylation, gene transcription, and antiviral responses. These differences are not due to ligand-binding affinity and receptor abundance. Here, we investigated the ability of the intracellular domains (ICDs) of IFN receptors to differentiate between type I and III IFN signaling. We engineered synthetic, heterodimeric type I and III IFN receptors that were stably expressed at similar amounts in human cells and responded to a common ligand. We found that our synthetic type I IFN receptors stimulated STAT phosphorylation and gene expression to greater extents than did the corresponding type III IFN receptors. Furthermore, we identified short “box motifs” within ICDs that bind to JAK1 that were sufficient to encode differences between the type I and III IFN receptors. Together, our results indicate that specific regions within the ICDs of IFN receptor subunits encode different downstream signaling strengths that enable type I and III IFN receptors to produce distinct signaling outcomes.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Cell Biology,Molecular Biology,Biochemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3