Mastering the game of Stratego with model-free multiagent reinforcement learning

Author:

Perolat Julien1ORCID,De Vylder Bart1ORCID,Hennes Daniel1ORCID,Tarassov Eugene1ORCID,Strub Florian1ORCID,de Boer Vincent1,Muller Paul1,Connor Jerome T.1ORCID,Burch Neil1,Anthony Thomas1,McAleer Stephen1ORCID,Elie Romuald1,Cen Sarah H.1ORCID,Wang Zhe1ORCID,Gruslys Audrunas1,Malysheva Aleksandra1,Khan Mina1,Ozair Sherjil1,Timbers Finbarr1ORCID,Pohlen Toby1,Eccles Tom1ORCID,Rowland Mark1,Lanctot Marc1,Lespiau Jean-Baptiste1,Piot Bilal1ORCID,Omidshafiei Shayegan1,Lockhart Edward1ORCID,Sifre Laurent1,Beauguerlange Nathalie1ORCID,Munos Remi1,Silver David1ORCID,Singh Satinder1ORCID,Hassabis Demis1ORCID,Tuyls Karl1ORCID

Affiliation:

1. DeepMind Technologies Ltd., London, UK.

Abstract

We introduce DeepNash, an autonomous agent that plays the imperfect information game Stratego at a human expert level. Stratego is one of the few iconic board games that artificial intelligence (AI) has not yet mastered. It is a game characterized by a twin challenge: It requires long-term strategic thinking as in chess, but it also requires dealing with imperfect information as in poker. The technique underpinning DeepNash uses a game-theoretic, model-free deep reinforcement learning method, without search, that learns to master Stratego through self-play from scratch. DeepNash beat existing state-of-the-art AI methods in Stratego and achieved a year-to-date (2022) and all-time top-three ranking on the Gravon games platform, competing with human expert players.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3