Mapping human cell phenotypes to genotypes with single-cell genomics

Author:

Camp J. Gray1ORCID,Platt Randall2ORCID,Treutlein Barbara2ORCID

Affiliation:

1. Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.

2. Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.

Abstract

The cumulative activity of all of the body’s cells, with their myriad interactions, life histories, and environmental experiences, gives rise to a condition that is distinctly human and specific to each individual. It is an enduring goal to catalog our human cell types, to understand how they develop, how they vary between individuals, and how they fail in disease. Single-cell genomics has revolutionized this endeavor because sequencing-based methods provide a means to quantitatively annotate cell states on the basis of high-information content and high-throughput measurements. Together with advances in stem cell biology and gene editing, we are in the midst of a fascinating journey to understand the cellular phenotypes that compose human bodies and how the human genome is used to build and maintain each cell. Here, we will review recent advances into how single-cell genomics is being used to develop personalized phenotyping strategies that cross subcellular, cellular, and tissue scales to link our genome to our cumulative cellular phenotypes.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3