Parity-preserving and magnetic field–resilient superconductivity in InSb nanowires with Sn shells

Author:

Pendharkar M.1ORCID,Zhang B.2ORCID,Wu H.2ORCID,Zarassi A.2ORCID,Zhang P.2ORCID,Dempsey C. P.1ORCID,Lee J. S.3ORCID,Harrington S. D.4ORCID,Badawy G.5ORCID,Gazibegovic S.5ORCID,Op het Veld R. L. M.5ORCID,Rossi M.5ORCID,Jung J.5ORCID,Chen A.-H.6ORCID,Verheijen M. A.5ORCID,Hocevar M.6ORCID,Bakkers E. P. A. M.5,Palmstrøm C. J.134ORCID,Frolov S. M.2ORCID

Affiliation:

1. Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA.

2. Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA.

3. California NanoSystems Institute, University of California, Santa Barbara, CA 93106, USA.

4. Materials Department, University of California, Santa Barbara, CA 93106, USA.

5. Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands.

6. Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France.

Abstract

Move aside, aluminum Some of the most promising schemes for quantum information processing involve superconductors. In addition to the established superconducting qubits, topological qubits may one day be realized in semiconductor-superconductor heterostructures. The superconductor most widely used in this context is aluminum, in which processes that cause decoherence are suppressed. Pendharkar et al. go beyond this paradigm to show that superconducting tin can be used in place of aluminum (see the Perspective by Fatemi and Devoret). The authors grew nanowires of indium antimonide, which is a semiconductor, and coated them with a thin layer of tin without using cumbersome epitaxial growth techniques. This process creates a well-defined, “hard” superconducting gap in the nanowires, which is a prerequisite for using them as the basis for a potential topological qubit. Science , this issue p. 508 ; see also p. 464

Funder

National Science Foundation

Office of Naval Research

Army Research Office

Microsoft Research

European Research Council

Agence Nationale de la Recherche

Ministry of Employment and the Economy

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3