Interfacially Enhanced Superconductivity in Fe(Te,Se)/Bi4Te3 Heterostructures

Author:

Chen An‐Hsi1,Lu Qiangsheng1,Hershkovitz Eitan2,Crespillo Miguel L.3,Mazza Alessandro R.14,Smith Tyler1,Ward T. Zac1,Eres Gyula1,Gandhi Shornam2,Mahfuz Meer Muhtasim2,Starchenko Vitalii5,Hattar Khalid3,Lee Joon Sue6,Kim Honggyu2,Moore Robert G.1,Brahlek Matthew1ORCID

Affiliation:

1. Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA

2. Department of Materials Science and Engineering University of Florida Gainesville FL 32611 USA

3. Department Nuclear Engineering The University of Tennessee Knoxville TN 37996 USA

4. Materials Science and Technology Division Los Alamos National Laboratory Los Alamos NM 87545 USA

5. Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA

6. Department of Physics and Astronomy The University of Tennessee Knoxville TN 37996 USA

Abstract

AbstractRealizing topological superconductivity by integrating high‐transition‐temperature (TC) superconductors with topological insulators can open new paths for quantum computing applications. Here, a new approach is reported for increasing the superconducting transition temperature by interfacing the unconventional superconductor Fe(Te,Se) with the topological insulator Bi–Te system in the low‐Se doping regime, near where superconductivity vanishes in the bulk. The critical finding is that the of Fe(Te,Se) increases from nominally non‐superconducting to as high as 12.5 K when Bi2Te3 is replaced with the topological phase Bi4Te3. Interfacing Fe(Te,Se) with Bi4Te3 is also found to be critical for stabilizing superconductivity in monolayer films where can be as high as 6 K. Measurements of the electronic and crystalline structure of the Bi4Te3 layer reveal that a large electron transfer, epitaxial strain, and novel chemical reduction processes are critical factors for the enhancement of superconductivity. This novel route for enhancing TC in an important epitaxial system provides new insight on the nature of interfacial superconductivity and a platform to identify and utilize new electronic phases.

Funder

U.S. Department of Energy

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3