Bloch state tomography using Wilson lines

Author:

Li Tracy12,Duca Lucia12,Reitter Martin12,Grusdt Fabian345,Demler Eugene5,Endres Manuel56,Schleier-Smith Monika7,Bloch Immanuel12,Schneider Ulrich128

Affiliation:

1. Fakultät für Physik, Ludwig-Maximilians-Universität München, Schellingstrasse 4, 80799 Munich, Germany.

2. Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany.

3. Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Germany.

4. Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, 67663 Kaiserslautern, Germany.

5. Department of Physics, Harvard University, Cambridge, MA 02138, USA.

6. Institute for Quantum Information and Matter, Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA.

7. Department of Physics, Stanford University, Stanford, CA 94305, USA.

8. Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, UK.

Abstract

Cold atoms do geometry Electrons in solids populate energy bands, which can be simulated in cold atom systems using optical lattices. The geometry of the corresponding wave functions determines the topological properties of the system, but getting a direct look is tricky. Fläschner et al. and Li et al. measured the detailed structure of the band wave functions in hexagonal optical lattices, one resembling a boron-nitride and the other a graphene lattice. These techniques will make it possible to explore more complex situations that include the effects of interactions. Science , this issue pp. 1091 and 1094

Funder

Alfred P. Sloan Foundation

European Commision

Nanosystems Initiative Munich

NSF

Defense Advanced Research Projects Agency

Air Force Office of Scientific Research

Quantum Simulation Multidisciplinary University Research Initiative (MURI)

Army Research Office (ARO)

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 134 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3