A linear cobalt(II) complex with maximal orbital angular momentum from a non-Aufbau ground state

Author:

Bunting Philip C.1ORCID,Atanasov Mihail23ORCID,Damgaard-Møller Emil4,Perfetti Mauro5ORCID,Crassee Iris6ORCID,Orlita Milan67ORCID,Overgaard Jacob4,van Slageren Joris5ORCID,Neese Frank2,Long Jeffrey R.189

Affiliation:

1. Department of Chemistry, University of California, Berkeley, CA 94720, USA.

2. Max-Planck-Insitut für Kohlenforschung, Mülheim an der Ruhr D-45470, Germany.

3. Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Academy Georgi Bontchev, Sofia 1113, Bulgaria.

4. Department of Chemistry and Centre for Materials Crystallography, Aarhus University, DK-8000 Aarhus C, Denmark.

5. Institut für Physikalische Chemie and Center for Integrated Quantum Science and Technology (IQST), Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.

6. Univ. Grenoble Alpes, Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25 rue des Martyrs, 38042 Grenoble, France.

7. Institute of Physics, Charles University, Ke Karlovu 5, 12116 Praha 2, Czech Republic.

8. Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA.

9. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Abstract

Cobalt unfettered by its ligand field Applied magnetic fields induce a field in any compound with unpaired electrons. However, for the induced field to persist once the applied field is gone, the electrons must be configured to manifest orbital angular momentum. Generally, the influence of ligands severely restricts that property in transition metal complexes. Bunting et al. now show that a cobalt ion is just barely affected by two linearly coordinated carbon ligands and, as such, exhibits maximal orbital angular momentum. Although its magnetic properties mainly pertain at very low temperature, its structure offers a more general design principle. Science , this issue p. eaat7319

Funder

National Science Foundation

Deutsche Forschungsgemeinschaft

Danish National Research Foundation

Max-Planck-Gesellschaft

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3