Reaching the magnetic anisotropy limit of a 3 d metal atom

Author:

Rau Ileana G.1,Baumann Susanne12,Rusponi Stefano3,Donati Fabio3,Stepanow Sebastian4,Gragnaniello Luca3,Dreiser Jan35,Piamonteze Cinthia5,Nolting Frithjof5,Gangopadhyay Shruba1,Albertini Oliver R.16,Macfarlane Roger M.1,Lutz Christopher P.1,Jones Barbara A.1,Gambardella Pietro4,Heinrich Andreas J.1,Brune Harald3

Affiliation:

1. IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA.

2. Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland.

3. Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland.

4. Department of Materials, Eidgenössische Technische Hochschule (ETH) Zürich, Hönggerbergring 64, CH-8093 Zürich, Switzerland.

5. Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland.

6. Department of Physics, Georgetown University, 3700 O Street NW, Washington, DC 20057, USA.

Abstract

Maximizing atomic magnetic memory A study of the magnetic response of cobalt atoms adsorbed on oxide surfaces may lead to much denser storage of data. In hard drives, data are stored as magnetic bits; the magnetic field pointing up or down corresponds to storing a zero or a one. The smallest bit possible would be a single atom, but the magnetism of a single atom —its spin—has to be stabilized by interactions with heavy elements or surfaces through an effect called spin-orbit coupling. Rau et al. (see the Perspective by Khajetoorians and Wiebe) built a model system in pursuit of single-atom bits—cobalt atoms adsorbed on magnesium oxide. At temperatures approaching absolute zero, the stabilization of the spin's magnetic direction reached the maximum that is theoretically possible. Science , this issue p. 988 ; see also p. 976

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 313 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3