Dying cells fan the flames of inflammation

Author:

Newton Kim1ORCID,Dixit Vishva M.1ORCID,Kayagaki Nobuhiko1ORCID

Affiliation:

1. Physiological Chemistry Department, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.

Abstract

Inflammatory processes that recruit leukocytes to injured or infected tissues are crucial for tissue repair and the elimination of pathogens. However, excessive or chronic inflammation promotes tissue damage and disease, as in arthritis, atherosclerosis, inflammatory bowel disease, and COVID-19. Intracellular constituents released from dying cells are among the stimuli that trigger proinflammatory gene expression programs in innate immune cells. We explore how programmed cell death mechanisms—apoptosis, necroptosis, and pyroptosis—may contribute to inflammatory disease. We discuss inhibition of cell death as a potential therapeutic strategy, focusing on the targets RIPK1 (receptor interacting serine/threonine kinase 1), NLRP3 (NLR family pyrin domain containing 3), and GSDMD (gasdermin D) as important mediators of lytic cell death. We also consider the potential benefits of limiting membrane rupture rather than cell death by targeting NINJ1.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3