Rheological Measurements of the Thermoviscoelastic Response of Ultrathin Polymer Films

Author:

O'Connell P. A.1,McKenna G. B.1

Affiliation:

1. Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409–3121, USA.

Abstract

Measurement of the thermoviscoelastic behavior of glass-forming liquids in the nanometer size range offers the possibility of increased understanding of the fundamental nature of the glass-transition phenomenon itself. We present results from use of a previously unknown method for characterizing the rheological response of nanometer-thick polymer films. The method relies on the imaging capabilities of the atomic force microscope and the reduction in size of the classical bubble inflation method of measuring the biaxial creep response of ultrathin polymer films. Creep compliance as a function of time and temperature was measured in the linear viscoelastic regime for films of poly(vinyl acetate) at a thickness of 27.5 nanometers. Although little evidence for a change in the glass temperature is found, the material exhibits previously unobserved stiffening in the rubbery response regime.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3