Measurement of the depth-dependent local dynamics in thin polymer films through rejuvenation of ultrastable glasses

Author:

Karimi Saba,Yin JunjieORCID,Salez ThomasORCID,Forrest James A.ORCID

Abstract

AbstractThe depth dependence of structural relaxation dynamics is a key part of understanding thin glassy films. Despite this importance and decades of research, a method to provide this information has proved elusive. We measure the isothermal rejuvenation of stable glass films of poly(styrene), and demonstrate that the propagation of the front responsible for the transformation to a supercooled-liquid state serves as a highly localized probe of the local dynamics of the supercooled liquid. We use this connection to probe the depth-dependent relaxation rate with nanometric precision for a series of polystyrene films over a range of temperatures near the bulk glass transition temperature. The analysis shows the spatial extent of enhanced surface mobility and reveals the existence of an unexpected large dynamical length scale in the system. The results are compared with the cooperative-string model for glassy dynamics. The data reveals that the film-thickness dependence of whole film properties arises mainly from the volume fraction of the near-surface region. While the dynamics farthest from the free surface shows the expected bulk-like temperature dependence, the dynamics in the near-surface region shows very little dependence on temperature. This technique can be used in a broad range of thin film materials to gain previously unattainable information about localized structural relaxation.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3