Probing the ultimate plasmon confinement limits with a van der Waals heterostructure

Author:

Alcaraz Iranzo David1ORCID,Nanot Sébastien12ORCID,Dias Eduardo J. C.3ORCID,Epstein Itai1ORCID,Peng Cheng4,Efetov Dmitri K.14,Lundeberg Mark B.1,Parret Romain1,Osmond Johann1ORCID,Hong Jin-Yong4ORCID,Kong Jing4ORCID,Englund Dirk R.4ORCID,Peres Nuno M. R.3,Koppens Frank H. L.15ORCID

Affiliation:

1. Institut de Ciències Fotòniques (ICFO)–The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain.

2. Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier Cedex, France.

3. Centro de Física and Departamento de Física and QuantaLab, Universidade do Minho, P-4710-057 Braga, Portugal.

4. Department of Electrical Engineering and Computer Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

5. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.

Abstract

Light confined to a single atomic layer The development of nanophotonic technology is reliant on the ability to confine light to spatial dimensions much less than the wavelength of the light itself. Typically, however, in metal plasmonic approaches, there is a trade-off between confinement and losses. Alcaraz Iranzo et al. fabricated heterostructures comprising monolayers of graphene and hexagonal boron nitride (hBN) and an array of metallic rods. The light was confined vertically (as propagating plasmons) between the metal and the graphene, even when the insulating hBN spacer was just a single monolayer. Such heterostructures should provide a powerful and versatile platform for nanophotonics. Science , this issue p. 291

Funder

Fundación Cellex

European Research Council

Ministerio de Economía y Competitividad

Horizon 2020

Government of Catalonia

Plan Nacional

Portuguese Foundation for Science and Technology

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 254 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3