The structural basis of flagellin detection by NAIP5: A strategy to limit pathogen immune evasion

Author:

Tenthorey Jeannette L.1ORCID,Haloupek Nicole1ORCID,López-Blanco José Ramón2,Grob Patricia3ORCID,Adamson Elise14,Hartenian Ella1ORCID,Lind Nicholas A.1ORCID,Bourgeois Natasha M.1ORCID,Chacón Pablo2ORCID,Nogales Eva135ORCID,Vance Russell E.136ORCID

Affiliation:

1. Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.

2. Departamento de Química Física Biológica, Instituto de Química Física ‘Rocasolano’, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain.

3. Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.

4. University of Maryland, Baltimore County, Baltimore, MD 21250, USA.

5. Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

6. Cancer Research Laboratory and Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, CA 94720, USA.

Abstract

Another spin at the wheel The NLR (nucleotide-binding domain leucine-rich repeat) proteins are a key intracellular component of the early innate immune response to pathogens. After binding microbial ligands, assorted NLR family members assemble to form enormous signaling complexes (inflammasomes), which promote pro-inflammatory cytokine secretion and cell death. Tenthorey et al. used cryo-electron microscopy to visualize an assembled ligand-bound inflammasome. They find that when NAIP5 binds flagellin, it changes conformation, which triggers a rotation in monomeric NLRC4, catalyzing further NLRC4 recruitment. Steric clash results in a partially open structure, in contrast with previous descriptions of a closed symmetrical “wheel.” Furthermore, NAIP5 recognizes multiple regions of its ligand, and mutations of flagellin that allow for NAIP5 evasion compromise bacterial fitness. Science , this issue p. 888

Funder

National Science Foundation

National Institutes of Health

Howard Hughes Medical Institute

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3