Formaldehyde regulates S -adenosylmethionine biosynthesis and one-carbon metabolism

Author:

Pham Vanha N.1ORCID,Bruemmer Kevin J.1ORCID,Toh Joel D. W.1,Ge Eva J.1ORCID,Tenney Logan1ORCID,Ward Carl C.2ORCID,Dingler Felix A.3ORCID,Millington Christopher L.3ORCID,Garcia-Prieto Carlos A.45ORCID,Pulos-Holmes Mia C.2ORCID,Ingolia Nicholas T.2ORCID,Pontel Lucas B.46ORCID,Esteller Manel4789ORCID,Patel Ketan J.3ORCID,Nomura Daniel K.121011ORCID,Chang Christopher J.12ORCID

Affiliation:

1. Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.

2. Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.

3. MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.

4. Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain.

5. Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain.

6. Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina.

7. Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Calle Monforte de Lemos, Madrid, Spain.

8. Institucio Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluis Companys, Barcelona, Spain.

9. Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Feixa Llarga, l’Hospitalet de Llobregat, Spain.

10. Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA.

11. Innovative Genomics Institute, Berkeley, CA 94704, USA.

Abstract

One-carbon metabolism is an essential branch of cellular metabolism that intersects with epigenetic regulation. In this work, we show how formaldehyde (FA), a one-carbon unit derived from both endogenous sources and environmental exposure, regulates one-carbon metabolism by inhibiting the biosynthesis of S -adenosylmethionine (SAM), the major methyl donor in cells. FA reacts with privileged, hyperreactive cysteine sites in the proteome, including Cys120 in S-adenosylmethionine synthase isoform type-1 (MAT1A). FA exposure inhibited MAT1A activity and decreased SAM production with MAT-isoform specificity. A genetic mouse model of chronic FA overload showed a decrease n SAM and in methylation on selected histones and genes. Epigenetic and transcriptional regulation of Mat1a and related genes function as compensatory mechanisms for FA-dependent SAM depletion, revealing a biochemical feedback cycle between FA and SAM one-carbon units.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3