Renewable acrylonitrile production

Author:

Karp Eric M.1ORCID,Eaton Todd R.1ORCID,Sànchez i Nogué Violeta1ORCID,Vorotnikov Vassili1ORCID,Biddy Mary J.1,Tan Eric C. D.1ORCID,Brandner David G.1ORCID,Cywar Robin M.1,Liu Rongming2,Manker Lorenz P.1,Michener William E.1ORCID,Gilhespy Michelle3,Skoufa Zinovia3ORCID,Watson Michael J.3ORCID,Fruchey O. Stanley4,Vardon Derek R.1ORCID,Gill Ryan T.2,Bratis Adam D.2,Beckham Gregg T.1ORCID

Affiliation:

1. National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.

2. Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA.

3. Johnson Matthey Technology Centre, Billingham, Cleveland TS23 1LB, UK.

4. MATRIC, South Charleston, WV 25303, USA.

Abstract

A sweet source to make acrylonitrile Much of the attention directed toward displacing petroleum feedstocks with biomass has focused on fuels. However, there are also numerous opportunities in commodity chemical production. One such candidate is acrylonitrile, a precursor to a wide variety of plastics and fibers that is currently derived from propylene. Karp et al. efficiently manufactured this compound from an ester (ethyl 3-hydroxypropanoate) that can be sourced renewably from sugars. The process relies on inexpensive titania as a catalyst and avoids the side production of cyanide that accompanies propylene oxidation. Science , this issue p. 1307

Funder

US Department of Energy Bioenergy Technologies Office

Extreme Science and Engineering Discovery Environment

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference100 articles.

1. J. M. Thomas W. J. Thomas Principles and Practice of Heterogeneous Catalysis (Wiley 2015).

2. Acrylonitrile from Biomass: Still Far from Being a Sustainable Process

3. The Sohio Acrylonitrile Process (American Chemical Society 1996); www.acs.org/content/dam/acsorg/education/whatischemistry/landmarks/acrylonitrile/sohio-acrylonitrile-process-commemorative-booklet-1996.pdf.

4. Advances and future trends in selective oxidation and ammoxidation catalysis

5. R. K. Grasselli in Nanostructured Catalysts: Selective Oxidations C. Hess R. Schlögl Eds. (Royal Society of Chemistry 2011) pp. 96–140.

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3