Imaging the breaking of electrostatic dams in graphene for ballistic and viscous fluids

Author:

Krebs Zachary J.1ORCID,Behn Wyatt A.1ORCID,Li Songci1ORCID,Smith Keenan J.1,Watanabe Kenji2ORCID,Taniguchi Takashi3ORCID,Levchenko Alex1ORCID,Brar Victor W.1ORCID

Affiliation:

1. Department of Physics, University of Wisconsin–Madison, Madison, WI 53706, USA.

2. Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan.

3. International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan.

Abstract

The charge carriers in a material can, under special circumstances, behave as a viscous fluid. In this work, we investigated such behavior by using scanning tunneling potentiometry to probe the nanometer-scale flow of electron fluids in graphene as they pass through channels defined by smooth and tunable in-plane p-n junction barriers. We observed that as the sample temperature and channel widths are increased, the electron fluid flow undergoes a Knudsen-to-Gurzhi transition from the ballistic to the viscous regime characterized by a channel conductance that exceeds the ballistic limit, as well as suppressed charge accumulation against the barriers. Our results are well modeled by finite element simulations of two-dimensional viscous current flow, and they illustrate how Fermi liquid flow evolves with carrier density, channel width, and temperature.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference83 articles.

1. Die Gesetze der Molekularströmung und der inneren Reibungsströmung der Gase durch Röhren

2. A possible method for studying Fermi surfaces;Sharvin Y. V.;Sov. Phys. JETP,1965

3. Minimum of resistance in impurity-free conductors;Gurzhi R.;Sov. Phys. JETP,1963

4. HYDRODYNAMIC EFFECTS IN SOLIDS AT LOW TEMPERATURE

5. Electron-electron-scattering-induced size effects in a two-dimensional wire

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3