Nanoscale terahertz conductivity and ultrafast dynamics of terahertz plasmons in periodic arrays of epitaxial graphene nanoribbons

Author:

Singh Arvind1ORCID,Němec Hynek1,Kunc Jan2ORCID,Kužel Petr1ORCID

Affiliation:

1. Institute of Physics of the Czech Academy of Sciences

2. Charles University

Abstract

The dynamics of plasmons in nanoribbons of (hydrogen intercalated) quasi-freestanding single-layer graphene is studied by terahertz spectroscopy both in the steady state and upon photoexcitation by an ultrashort near infrared laser pulse. The use of two-dimensional frequency-domain analysis of the optical pump–terahertz (THz) probe signals allows us to determine the evolution of carrier temperature and plasmon characteristics with 100 fs time resolution. Namely, we find that the carrier temperature decreases from more than 5000 K to the lattice temperature within about 7 ps and that during this evolution the carrier mobility remains practically constant. The time-resolved THz conductivity spectra suggest that graphene nanoribbons contain defects which act as low potential barriers causing a weak localization of charges; the potential barriers are overcome upon photoexcitation. Furthermore, the edges of graphene nanoribbons are found to slightly enhance the scattering of carriers. The results are supported by complementary measurements using THz scanning near-field microscopy, which confirm a high uniformity of the THz conductivity across the sample and demonstrate high enough sensitivity to resolve even the impact of nanometric terrace steps on SiC substrate under the graphene monolayer. Published by the American Physical Society 2024

Funder

Grantová Agentura České Republiky

Ministerstvo Školství, Mládeže a Tělovýchovy

European Commission

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3