Traffic Jams Reduce Hydrolytic Efficiency of Cellulase on Cellulose Surface

Author:

Igarashi Kiyohiko1,Uchihashi Takayuki234,Koivula Anu5,Wada Masahisa16,Kimura Satoshi16,Okamoto Tetsuaki12,Penttilä Merja5,Ando Toshio234,Samejima Masahiro1

Affiliation:

1. Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.

2. Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan.

3. Bio-AFM Frontier Research Center, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.

4. Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbon-cho, Chiyoda-ku, Tokyo 102-0075, Japan

5. VTT Technical Research Centre of Finland, Post Office Box 1000, FI-02044 VTT, Finland.

6. Department of Plant and Environmental New Resources, College of Life Sciences, Kyung Hee University, 1, Seocheon-dong, Giheung-ku, Yongin-si, Gyeonggi-do 446-701, Republic of Korea.

Abstract

High-speed atomic force microscopy tracks single-molecule dynamics of cellulose degradation into fermentable sugar molecules.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3