Programming twist angle and strain profiles in 2D materials

Author:

Kapfer Maëlle1ORCID,Jessen Bjarke S.1ORCID,Eisele Megan E.1ORCID,Fu Matthew1ORCID,Danielsen Dorte R.23ORCID,Darlington Thomas P.4ORCID,Moore Samuel L.1ORCID,Finney Nathan R.4ORCID,Marchese Ariane4,Hsieh Valerie1ORCID,Majchrzak Paulina5ORCID,Jiang Zhihao5ORCID,Biswas Deepnarayan5ORCID,Dudin Pavel6ORCID,Avila José6ORCID,Watanabe Kenji7ORCID,Taniguchi Takashi7ORCID,Ulstrup Søren5ORCID,Bøggild Peter23ORCID,Schuck P. J.4ORCID,Basov Dmitri N.1ORCID,Hone James4ORCID,Dean Cory R.1ORCID

Affiliation:

1. Department of Physics, Columbia University, New York, NY, USA.

2. Center for Nanostructured Graphene, Technical University of Denmark, DK-2800, Denmark.

3. DTU Physics, Technical University of Denmark, DK-2800, Denmark.

4. Department of Mechanical Engineering, Columbia University, New York, NY, USA.

5. Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.

6. Synchrotron SOLEIL, Université Paris-Saclay, F-91192 Gif sur Yvette, France.

7. National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan.

Abstract

Moiré superlattices in twisted two-dimensional materials have generated tremendous excitement as a platform for achieving quantum properties on demand. However, the moiré pattern is highly sensitive to the interlayer atomic registry, and current assembly techniques suffer from imprecise control of the average twist angle, spatial inhomogeneity in the local twist angle, and distortions caused by random strain. We manipulated the moiré patterns in hetero- and homobilayers through in-plane bending of monolayer ribbons, using the tip of an atomic force microscope. This technique achieves continuous variation of twist angles with improved twist-angle homogeneity and reduced random strain, resulting in moiré patterns with tunable wavelength and ultralow disorder. Our results may enable detailed studies of ultralow-disorder moiré systems and the realization of precise strain-engineered devices.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3