Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis

Author:

Drout M. R.1ORCID,Piro A. L.1,Shappee B. J.12ORCID,Kilpatrick C. D.3ORCID,Simon J. D.1,Contreras C.4ORCID,Coulter D. A.3ORCID,Foley R. J.3ORCID,Siebert M. R.3,Morrell N.4ORCID,Boutsia K.4ORCID,Di Mille F.4,Holoien T. W.-S.1ORCID,Kasen D.56,Kollmeier J. A.1ORCID,Madore B. F.1ORCID,Monson A. J.17ORCID,Murguia-Berthier A.3,Pan Y.-C.3ORCID,Prochaska J. X.3ORCID,Ramirez-Ruiz E.38ORCID,Rest A.910,Adams C.11ORCID,Alatalo K.19ORCID,Bañados E.1ORCID,Baughman J.1213ORCID,Beers T. C.1415ORCID,Bernstein R. A.1ORCID,Bitsakis T.16ORCID,Campillay A.17ORCID,Hansen T. T.1ORCID,Higgs C. R.1819ORCID,Ji A. P.1ORCID,Maravelias G.20ORCID,Marshall J. L.21ORCID,Bidin C. Moni22,Prieto J. L.1323,Rasmussen K. C.1415ORCID,Rojas-Bravo C.3ORCID,Strom A. L.1ORCID,Ulloa N.17ORCID,Vargas-González J.4ORCID,Wan Z.24ORCID,Whitten D. D.1415ORCID

Affiliation:

1. The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101, USA.

2. Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA.

3. Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA.

4. Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena, Chile.

5. Departments of Physics and Astronomy, 366 LeConte Hall, University of California, Berkeley, CA 94720, USA.

6. Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

7. Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA.

8. Dark Cosmology Center, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark.

9. Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA.

10. Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.

11. Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA.

12. Massachusetts Institute of Technology, Cambridge, MA, USA.

13. Núcleo de Astronomía de la Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Avenida Ejército 441, Santiago, Chile.

14. Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA.

15. Joint Institute for Nuclear Astrophysics, Center for the Evolution of the Elements, East Lansing, MI 48824, USA.

16. Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, C.P. 58190, Morelia, Mexico.

17. Departamento de Física y Astronomía, Facultad de Ciencias, Universidad de La Serena, Cisternas 1200, La Serena, Chile.

18. University of Victoria, Victoria, British Columbia, Canada.

19. National Research Council Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, British Columbia V9E 2E7, Canada.

20. Instituto de Física y Astronomía, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Casilla 5030, Valparaíso, Chile.

21. George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA.

22. Instituto de Astronomía, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile.

23. Millennium Institute of Astrophysics, Santiago, Chile.

24. Sydney Institute for Astronomy, School of Physics, A28, University of Sydney, NSW 2006, Australia.

Abstract

Photons from a gravitational wave event Two neutron stars merging together generate a gravitational wave signal and have also been predicted to emit electromagnetic radiation. When the gravitational wave event GW170817 was detected, astronomers rushed to search for the source using conventional telescopes (see the Introduction by Smith). Coulter et al. describe how the One-Meter Two-Hemispheres (1M2H) collaboration was the first to locate the electromagnetic source. Drout et al. present the 1M2H measurements of its optical and infrared brightness, and Shappee et al. report their spectroscopy of the event, which is unlike previously detected astronomical transient sources. Kilpatrick et al. show how these observations can be explained by an explosion known as a kilonova, which produces large quantities of heavy elements in nuclear reactions. Science , this issue p. 1556 , p. 1570 , p. 1574 , p. 1583 ; see also p. 1554

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference79 articles.

1. Binary Black Hole Mergers in the First Advanced LIGO Observing Run

2. Observation of Gravitational Waves from a Binary Black Hole Merger

3. Cosmology with coalescing massive black holes

4. Using Gravitational‐Wave Standard Sirens

5. S. Nissanke D. E. Holz N. Dalal S. A. Hughes J. L. Sievers C. M. Hirata Determining the Hubble constant from gravitational wave observations of merging compact binaries. arXiv:astro-ph/1307.2638 [astro-ph.CO] (10 July 2013).

Cited by 569 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3