Structural Basis of Transcription: An RNA Polymerase II Elongation Complex at 3.3 Å Resolution

Author:

Gnatt Averell L.1,Cramer Patrick1,Fu Jianhua1,Bushnell David A.1,Kornberg Roger D.1

Affiliation:

1. Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305–5126, USA.

Abstract

The crystal structure of RNA polymerase II in the act of transcription was determined at 3.3 Å resolution. Duplex DNA is seen entering the main cleft of the enzyme and unwinding before the active site. Nine base pairs of DNA-RNA hybrid extend from the active center at nearly right angles to the entering DNA, with the 3′ end of the RNA in the nucleotide addition site. The 3′ end is positioned above a pore, through which nucleotides may enter and through which RNA may be extruded during back-tracking. The 5′-most residue of the RNA is close to the point of entry to an exit groove. Changes in protein structure between the transcribing complex and free enzyme include closure of a clamp over the DNA and RNA and ordering of a series of “switches” at the base of the clamp to create a binding site complementary to the DNA-RNA hybrid. Protein–nucleic acid contacts help explain DNA and RNA strand separation, the specificity of RNA synthesis, “abortive cycling” during transcription initiation, and RNA and DNA translocation during transcription elongation.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3