Structural basis of transcription: RNA polymerase II substrate binding and metal coordination using a free-electron laser

Author:

Lin Guowu1,Barnes Christopher O.2ORCID,Weiss Simon1,Dutagaci Bercem3ORCID,Qiu Chenxi4,Feig Michael3ORCID,Song Jihnu5,Lyubimov Artem5ORCID,Cohen Aina E.5ORCID,Kaplan Craig D.6ORCID,Calero Guillermo1ORCID

Affiliation:

1. Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261

2. Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125

3. Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824

4. Department of Genetics, Harvard Medical School, Boston, MA 02115

5. Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025

6. Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260

Abstract

Catalysis and translocation of multisubunit DNA-directed RNA polymerases underlie all cellular mRNA synthesis. RNA polymerase II (Pol II) synthesizes eukaryotic pre-mRNAs from a DNA template strand buried in its active site. Structural details of catalysis at near-atomic resolution and precise arrangement of key active site components have been elusive. Here, we present the free-electron laser (FEL) structures of a matched ATP-bound Pol II and the hyperactive Rpb1 T834P bridge helix (BH) mutant at the highest resolution to date. The radiation-damage-free FEL structures reveal the full active site interaction network, including the trigger loop (TL) in the closed conformation, bonafide occupancy of both site A and B Mg 2+ , and, more importantly, a putative third (site C) Mg 2+ analogous to that described for some DNA polymerases but not observed previously for cellular RNA polymerases. Molecular dynamics (MD) simulations of the structures indicate that the third Mg 2+ is coordinated and stabilized at its observed position. TL residues provide half of the substrate binding pocket while multiple TL/BH interactions induce conformational changes that could allow translocation upon substrate hydrolysis. Consistent with TL/BH communication, a FEL structure and MD simulations of the T834P mutant reveal rearrangement of some active site interactions supporting potential plasticity in active site function and long-distance effects on both the width of the central channel and TL conformation, likely underlying its increased elongation rate at the expense of fidelity.

Funder

HHS | NIH | NCI | CCR | Basic Research Laboratory

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3