De novo design of picomolar SARS-CoV-2 miniprotein inhibitors

Author:

Cao Longxing12ORCID,Goreshnik Inna12,Coventry Brian123ORCID,Case James Brett4ORCID,Miller Lauren12ORCID,Kozodoy Lisa12,Chen Rita E.45,Carter Lauren12ORCID,Walls Alexandra C.1ORCID,Park Young-Jun1,Strauch Eva-Maria6ORCID,Stewart Lance12ORCID,Diamond Michael S.47ORCID,Veesler David1ORCID,Baker David128ORCID

Affiliation:

1. Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.

2. Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.

3. Molecular Engineering Graduate Program, University of Washington, Seattle, WA 98195, USA.

4. Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.

5. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.

6. Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA.

7. The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.

8. Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.

Abstract

Miniproteins against SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is decorated with spikes, and viral entry into cells is initiated when these spikes bind to the host angiotensin-converting enzyme 2 (ACE2) receptor. Many monoclonal antibody therapies in development target the spike proteins. Cao et al. designed small, stable proteins that bind tightly to the spike and block it from binding to ACE2. The best designs bind with very high affinity and prevent SARS-CoV-2 infection of mammalian Vero E6 cells. Cryo–electron microscopy shows that the structures of the two most potent inhibitors are nearly identical to the computational models. Unlike antibodies, the miniproteins do not require expression in mammalian cells, and their small size and high stability may allow formulation for direct delivery to the nasal or respiratory system. Science , this issue p. 426

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 522 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3