Development-Inspired Reprogramming of the Mammalian Central Nervous System

Author:

Amamoto Ryoji1,Arlotta Paola1

Affiliation:

1. Department of Stem Cell and Regenerative Biology, Sherman Fairchild Building, 7 Divinity Avenue, Harvard University, Cambridge, MA 02138, USA.

Abstract

Background: Differentiated cells can be reprogrammed to switch identities from one cell type to another under the direction of powerful transcription factors. In the mammalian central nervous system, this approach has been used experimentally to generate new categories of neuronal cells. The protocols are inspired by what we have learned from normal development, but the applications lie outside of normal embryogenesis. The research is changing how scientists think about regeneration of lost neurons and modeling of neuronal function in the central nervous system. The approaches also allow for new ways to study human neuronal development, a process that cannot be studied in vivo. Advances: Neurons are a highly specialized cell type, with their ability to transmit electrical signals. Beyond that, though, neurons also specialize into an astonishing diversity of classes. Although reprogramming with known transcription factors is a comparatively blunt tool, researchers have used knowledge of normal neuronal development to identify suites of factors that can convert mouse or human non-neuronal cells into induced neuronal cells showing class-specific features. These protocols have provided a renewable source of neuronal cells for high-throughput studies, which is particularly useful when source tissue is rare or unavailable. One exciting application of lineage reprogramming has been the generation of new neurons in situ by the direct conversion of other cell types already resident within the brain. Astrocytes have been converted into neurons in vivo. Even neurons have been changed from one subtype to another in young animals, indicating that postmitotic neurons may not be as immutable as once thought. These provocative results may foster the development of strategies for neuronal replacement that rely on “code-switching” of neuronal identity on the spot. Outlook: Direct lineage reprogramming is a nascent but promising field. Although both unspecialized and specialized neuronal cells have already been generated by these methods, we still need more refined understanding of how reprogramming works, how the cellular context constrains reprogramming routes, and what synergistic effects arise with various reprogramming factors. Better-defined criteria are needed to classify neurons obtained by reprogramming and to determine how they differ from their endogenous counterparts. Functional analyses are also necessary to clarify when a new neuron achieves the needed function, even if its other features do not match endogenous neurons. The challenge requires collaborative expertise in stem cell biology, embryology, and fundamental neuroscience. Future ability to reprogram postmitotic neurons in the adult brain will be important for the growth of this field and likely influence the way we think about neuronal stability, regeneration, and function.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3