Electrically gated molecular thermal switch

Author:

Li Man1ORCID,Wu Huan1ORCID,Avery Erin M.23ORCID,Qin Zihao1ORCID,Goronzy Dominic P.23ORCID,Nguyen Huu Duy1,Liu Tianhan2ORCID,Weiss Paul S.2345ORCID,Hu Yongjie135ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA.

2. Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.

3. California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.

4. Department of Bioengineering, University of California, Los Angeles, CA 90095, USA.

5. Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA.

Abstract

Controlling heat flow is a key challenge for applications ranging from thermal management in electronics to energy systems, industrial processing, and thermal therapy. However, progress has generally been limited by slow response times and low tunability in thermal conductance. In this work, we demonstrate an electronically gated solid-state thermal switch using self-assembled molecular junctions to achieve excellent performance at room temperature. In this three-terminal device, heat flow is continuously and reversibly modulated by an electric field through carefully controlled chemical bonding and charge distributions within the molecular interface. The devices have ultrahigh switching speeds above 1 megahertz, have on/off ratios in thermal conductance greater than 1300%, and can be switched more than 1 million times. We anticipate that these advances will generate opportunities in molecular engineering for thermal management systems and thermal circuit design.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference96 articles.

1. The Transistor, A Semi-Conductor Triode

2. The Nobel Prize in Physics 1956; https://www.nobelprize.org/prizes/physics/1956/summary/.

3. “Heating and Cooling” (US Department of Energy); https://www.energy.gov/energysaver/heating-and-cooling.

4. Experimental observation of high thermal conductivity in boron arsenide

5. Opportunities and challenges for a sustainable energy future

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3