Immotile cilia mechanically sense the direction of fluid flow for left-right determination

Author:

Katoh Takanobu A.12ORCID,Omori Toshihiro3ORCID,Mizuno Katsutoshi1ORCID,Sai Xiaorei1,Minegishi Katsura1ORCID,Ikawa Yayoi1,Nishimura Hiromi1,Itabashi Takeshi4ORCID,Kajikawa Eriko1,Hiver Sylvain1,Iwane Atsuko H.4ORCID,Ishikawa Takuji3ORCID,Okada Yasushi56ORCID,Nishizaka Takayuki2ORCID,Hamada Hiroshi1ORCID

Affiliation:

1. Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan.

2. Department of Physics, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan.

3. Graduate School of Biomedical Engineering, Tohoku University, Aoba Aramaki, Sendai, Miyagi, Japan.

4. RIKEN Center for Biosystems Dynamics Research, Higashi-Hiroshima, Hiroshima, Japan.

5. Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan.

6. Department of Cell Biology and Physics, Universal Biology Institute and International Research Center for Neurointelligence, The University of Tokyo, Hongo, Tokyo, Japan.

Abstract

Immotile cilia at the ventral node of mouse embryos are required for sensing leftward fluid flow that breaks left-right symmetry of the body. However, the flow-sensing mechanism has long remained elusive. In this work, we show that immotile cilia at the node undergo asymmetric deformation along the dorsoventral axis in response to the flow. Application of mechanical stimuli to immotile cilia by optical tweezers induced calcium ion transients and degradation of Dand5 messenger RNA (mRNA) in the targeted cells. The Pkd2 channel protein was preferentially localized to the dorsal side of immotile cilia, and calcium ion transients were preferentially induced by mechanical stimuli directed toward the ventral side. Our results uncover the biophysical mechanism by which immotile cilia at the node sense the direction of fluid flow.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3