Structural basis of α-scorpion toxin action on Na v channels

Author:

Clairfeuille Thomas1ORCID,Cloake Alexander12ORCID,Infield Daniel T.3,Llongueras José P.4ORCID,Arthur Christopher P.1ORCID,Li Zhong Rong5ORCID,Jian Yuwen6,Martin-Eauclaire Marie-France7,Bougis Pierre E.7,Ciferri Claudio1,Ahern Christopher A.3ORCID,Bosmans Frank8ORCID,Hackos David H.6ORCID,Rohou Alexis1ORCID,Payandeh Jian1

Affiliation:

1. Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA.

2. Department of Physics, University of Oxford, Oxford OX1 3PU, UK.

3. Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA.

4. Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

5. Department of Biomolecular Resources, Genentech Inc., South San Francisco, CA, USA.

6. Department of Neuroscience, Genentech Inc., South San Francisco, CA, USA.

7. Aix Marseille Université, CNRS, LNC, UMR 7291, 13003 Marseille, France.

8. Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium.

Abstract

How activation leads to gating Voltage-gated sodium (Na v ) channels are key players in electrical signaling. Central to their function is fast inactivation, and mutants that impede this cause conditions such as epilepsy and pain syndromes. The channels have four voltage-sensing domains (VSDs), with VSD4 playing an important role in fast inactivation. Clairfeuille et al. determined the structures of a chimera in which VSD4 of the cockroach channel Na v PaS is replaced with VSD4 from human Na v 1.7, both in the apo state and bound to a scorpion toxin that impedes fast activation (see the Perspective by Chowdhury and Chanda). The toxin traps VSD4 in a deactivated state. Comparison with the apo structure shows how interactions between VSD4 and the carboxyl-terminal region change as VSD4 activates and suggests how this would lead to fast inactivation. Science , this issue p. eaav8573 ; see also p. 1278

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3