3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds

Author:

Oran Daniel1ORCID,Rodriques Samuel G.12ORCID,Gao Ruixuan1,Asano Shoh13,Skylar-Scott Mark A.45ORCID,Chen Fei16,Tillberg Paul W.17,Marblestone Adam H.1,Boyden Edward S.168910ORCID

Affiliation:

1. MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

2. Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

3. Pfizer Internal Medicine Research Unit, Cambridge, MA 02139, USA.

4. John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

5. Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 02138, USA.

6. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

7. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

8. Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

9. McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

10. Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Abstract

Shrinking problems in 3D printing Although a range of materials can now be fabricated using additive manufacturing techniques, these usually involve assembly of a series of stacked layers, which restricts three-dimensional (3D) geometry. Oran et al. developed a method to print a range of materials, including metals and semiconductors, inside a gel scaffold (see the Perspective by Long and Williams). When the hydrogels were dehydrated, they shrunk 10-fold, which pushed the feature sizes down to the nanoscale. Science , this issue p. 1281 ; see also p. 1244

Funder

National Science Foundation

National Institutes of Health

Hertz Foundation

Office of Naval Research

Army Research Office

Kavli Foundation

New York Stem Cell Foundation

Open Philanthropy Project

HHMI-Simons Faculty Scholars Program

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3