Enhanced DBR mirror design via D3QN: A reinforcement learning approach

Author:

Yu Seungjun,Lee Haneol,Ju Changyoung,Han HaewookORCID

Abstract

Modern optical systems are important components of contemporary electronics and communication technologies, and the design of new systems has led to many innovative breakthroughs. This paper introduces a novel application based on deep reinforcement learning, D3QN, which is a combination of the Dueling Architecture and Double Q-Network methods, to design distributed Bragg reflectors (DBRs). Traditional design methods are based on time-consuming iterative simulations, whereas D3QN is designed to optimize the multilayer structure of DBRs. This approach enabled the reflectance performance and compactness of the DBRs to be improved. The reflectance of the DBRs designed using D3QN is 20.5% higher compared to designs derived from the transfer matrix method (TMM), and these DBRs are 61.2% smaller in terms of their size. These advancements suggest that deep reinforcement learning, specifically the D3QN methodology, is a promising new method for optical design and is more efficient than traditional techniques. Future research possibilities include expansion to 2D and 3D design structures, where increased design complexities could likely be addressed using D3QN or similar innovative solutions.

Funder

Samsung

LGinnotek

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3