Recent Trends in Arctic Surface, Cloud, and Radiation Properties from Space

Author:

Wang Xuanji1,Key Jeffrey R.2

Affiliation:

1. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, 1225 West Dayton Street, Madison, WI 53706, USA.

2. Office of Research and Applications, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, 1225 West Dayton Street, Madison, WI 53706, USA.

Abstract

Trends in satellite-derived cloud and surface properties for 1982 to 1999 show that the Arctic has warmed and become cloudier in spring and summer but has cooled and become less cloudy in winter. The increase in spring cloud amount radiatively balances changes in surface temperature and albedo, but during summer, fall, and winter, cloud forcing has tended toward increased cooling. This implies that, if seasonal cloud amounts were not changing, surface warming would be even greater than that observed. Strong correlations with the Arctic Oscillation indicate that the rise in surface temperature and changes in cloud amount are related to large-scale circulation rather than to local processes.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3