Variability of Surface Radiation Budget over Arctic during Two Recent Decades from Perspective of CERES and ERA5 Data

Author:

Seo Minji1ORCID,Kim Hyun-Cheol1ORCID,Seong Noh-Hun2ORCID,Sim Suyoung2ORCID,Han Kyung-Soo2ORCID

Affiliation:

1. Center of Remote Sensing and GIS, Korea Polar Research Institute, Incheon 21990, Republic of Korea

2. Division of Earth Environmental System Science (Major of Spatial Information Engineering), Pukyong National University, Busan 48513, Republic of Korea

Abstract

This study focused on surface radiation budget, one of the essential factors for understanding climate change. Arctic surface radiation budget was summarized and explained using a satellite product, Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF), and reanalysis data, ERA5. Net radiation records indicated an increasing trend only in ERA5, with EBAF indicating a decreasing trend in the Arctic Circle (AC; poleward from 65°N) from 2000 to 2018. The differences in the net radiation trend between product types was due to longwave downward radiation. The extreme season was selected according to the seasonality of net radiation, surface air temperature, and sea ice extent. The surface radiation budget was synthesized for extreme season in the AC. Regardless of the data, net radiation tended to increase in the summer on an annual trend. By contrast, in the winter, trend of surface net radiation was observed in which ERA5 increased and EBAF decreased. The difference in surface radiation is represented in longwave of each data. This comprehensive information can be used to analyze and predict the surface energy budget, transport, and interaction between the atmosphere and surface in the Arctic.

Funder

Korea Polar Research Institute

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3