Strange Metal Transport Realized by Gauge/Gravity Duality

Author:

Faulkner Thomas1,Iqbal Nabil2,Liu Hong2,McGreevy John2,Vegh David3

Affiliation:

1. Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA.

2. Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

3. Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY 11794–3636, USA.

Abstract

Black Holes as Tools When confronted with a difficult problem, physicists often resort to mapping it to a more tractable one. A good example of this strategy is provided by new developments linking string theory and condensed-matter physics to make theoretical connections between gravity and complex systems of interacting electrons. This theoretical convergence provides a description of Fermi liquids, which can be thought of as interacting systems of electrons whose excitations can be expressed in terms of non-interacting quasiparticles. Several interesting systems elude quasiparticle description, but Faulkner et al. (p. 1043 , published online 5 August) have now developed a mathematical framework that describes the non-Fermi liquid represented by the strange metal phase of cuprate high-temperature superconductors. They calculate the electronic response and, for a particular value of a tunable parameter, recover the linear resistivity. Further development of this framework may allow elucidation of other exotic properties of the cuprates and similar complex systems.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3