Author:
Ahn Byoungjoon,Jeong Hyun-Sik,Kim Keun-Young,Yun Kwan
Abstract
Abstract
We employ a deep learning method to deduce the bulk spacetime from boundary optical conductivity. We apply the neural ordinary differential equation technique, tailored for continuous functions such as the metric, to the typical class of holographic condensed matter models featuring broken translations: linear-axion models. We successfully extract the bulk metric from the boundary holographic optical conductivity. Furthermore, as an example for real material, we use experimental optical conductivity of UPd2Al3, a representative of heavy fermion metals in strongly correlated electron systems, and construct the corresponding bulk metric. To our knowledge, our work is the first illustration of deep learning bulk spacetime from boundary holographic or experimental conductivity data.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献