Fully State-Resolved Differential Cross Sections for the Inelastic Scattering of the Open-Shell NO Molecule by Ar

Author:

Kohguchi Hiroshi1,Suzuki Toshinori12,Alexander Millard H.3

Affiliation:

1. Institute for Molecular Science and Graduate University for Advanced Studies, Myodaiji, Okazaki 444-8585, Japan.

2. PRESTO, Japan Science and Technology Corporation, Japan.

3. Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742–2021, USA.

Abstract

State-resolved differential cross sections (DCSs) for the inelastic scattering of NO( j " = 0.5, Ω" = 1/2) + Ar → NO( j ′, Ω′ = 1/2, 3/2) + Ar were obtained at a collision energy of 516 cm −1 , both experimentally and theoretically. A crossed molecular beam ion-imaging apparatus was used to measure DCSs for 20 final ( j ′, Ω′) states, including spin-orbit conserving (ΔΩ = 0) and changing (ΔΩ = 1) transitions. Quantum close-coupling scattering calculations on ab initio coupled-cluster CCSD(T) and CEPA (correlated electron pair approximation) potential energy surfaces were also performed. Although small discrepancies were found for the ΔΩ = 1 transitions, we find marked agreement between theory and experiment for the collision dynamics of this system, which is the paradigm for the collisional relaxation of a molecular radical.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3