Affiliation:
1. Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
Abstract
We present a joint experimental and theoretical study of rotationally inelastic collisions between NO ( X2Π1/2, ν = 0, j = 1/2, f) radicals and CO ( X1Σ+, ν = 0, j = 0) molecules at a collision energy of 220 cm−1. State-to-state scattering images for excitation of NO radicals into various final states were measured with high resolution by combining the Stark deceleration and velocity map imaging techniques. The high image resolution afforded the observation of correlated rotational excitations of NO–CO pairs, which revealed a number of striking scattering phenomena. The so-called “parity-pair” transitions in NO are found to have similar differential cross sections, independent of the concurrent excitation of CO, extending this well-known effect for collisions between NO and rare gas atoms into the realm of bimolecular collisions. Forward scattering is found for collisions that induce a large amount of rotational energy transfer (in either NO, CO, or both), which require low impact parameters to induce sufficient energy transfer. This observation is interpreted in terms of the recently discovered hard collision glory scattering mechanism, which predicts the forward bending of initially backward receding trajectories if the energy uptake in the collision is substantial in relation to the collision energy. The experimental results are in good agreement with the predictions from coupled-channels quantum scattering calculations based on an ab initio NO–CO potential energy surface.
Funder
HORIZON EUROPE European Research Council
European Research Council
Chinese Government Scholarship
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献