Isostructural metal-insulator transition in VO2

Author:

Lee D.1ORCID,Chung B.2ORCID,Shi Y.3ORCID,Kim G.-Y.4ORCID,Campbell N.5,Xue F.3ORCID,Song K.4,Choi S.-Y.4ORCID,Podkaminer J. P.1ORCID,Kim T. H.1,Ryan P. J.67,Kim J.-W.6,Paudel T. R.8ORCID,Kang J.-H.1ORCID,Spinuzzi J. W.9,Tenne D. A.9ORCID,Tsymbal E. Y.8,Rzchowski M. S.5,Chen L. Q.3ORCID,Lee J.2ORCID,Eom C. B.1ORCID

Affiliation:

1. Department of Materials Science and Engineering, University of Wisconsin, Madison, WI 53706, USA.

2. School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Korea.

3. Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA.

4. Department of Materials Modeling and Characterization, Korea Institute of Materials Science, Changwon 642-831, Korea.

5. Department of Physics, University of Wisconsin, Madison, WI 53706, USA.

6. Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA.

7. School of Physical Sciences, Dublin City University, Dublin 9, Ireland.

8. Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588, USA.

9. Department of Physics, Boise State University, Boise, ID 83725, USA.

Abstract

The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities.

Funder

National Science Foundation

Office of Naval Research

U.S. Department of Energy

Air Force Office of Scientific Research

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3