Developing fatigue-resistant ferroelectrics using interlayer sliding switching

Author:

Bian Renji12ORCID,He Ri3ORCID,Pan Er1ORCID,Li Zefen1ORCID,Cao Guiming45,Meng Peng1,Chen Jiangang1ORCID,Liu Qing1ORCID,Zhong Zhicheng367ORCID,Li Wenwu89ORCID,Liu Fucai1210ORCID

Affiliation:

1. School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.

2. Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.

3. Key Laboratory of Magnetic Materials Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

4. School of Information Science and Technology, Xi Chang University, Xi Chang 615013, China.

5. Key Laboratory of Liangshan Agriculture Digital Transformation of Sichuan Provincial Education Department, Xi Chang University, Xi Chang 615013, China.

6. Department of Physics, University of Science and Technology of China, Hefei 230026, China.

7. Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China.

8. Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, China.

9. State Key Laboratory of Photovoltaic Science and Technology, Department of Materials Science, Fudan University, Shanghai 200433, China.

10. State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China.

Abstract

Ferroelectric materials have switchable electrical polarization that is appealing for high-density nonvolatile memories. However, inevitable fatigue hinders practical applications of these materials. Fatigue-free ferroelectric switching could dramatically improve the endurance of such devices. We report a fatigue-free ferroelectric system based on the sliding ferroelectricity of bilayer 3R molybdenum disulfide (3R-MoS 2 ). The memory performance of this ferroelectric device does not show the wake-up effect at low cycles or a substantial fatigue effect after 10 6 switching cycles under different pulse widths. The total stress time of the device under an electric field is up to 10 5 s, which is long relative to other devices. Our theoretical calculations reveal that the fatigue-free feature of sliding ferroelectricity is due to the immobile charge defects in sliding ferroelectricity.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3