Grasslands feeling the heat: The effects of elevated temperatures on a subtropical grassland

Author:

Buhrmann Rowan D.,Ramdhani Syd,Pammenter Norman W.,Naidoo Sershen

Abstract

Background: Tropical and subtropical Africa is predicted to experience a rise in temperature. The effects of rising temperatures on temperate grasslands have been studied using open-top chambers (OTCs) but reports for tropical/subtropical grasslands are scarce. This study used OTCs to investigate the effects of elevated temperatures on a threatened subtropical grassland type, namely KwaZulu-Natal Sandstone Sourveld (KZNSS).Objectives: To assess the effects of OTCs on selected abiotic parameters and plant productivity within KZNSS.Methods: Five OTC and control plots were randomly distributed at the same altitude within a patch of KZNSS. Air and soil temperature, relative humidity (RH), soil moisture content and light intensity were monitored in all plots in spring, summer, autumn and winter. Biomass production and plant density were measured in each season, for each life form (graminoid, forb and shrub), separately and combined.Results: The OTCs resulted in a rise in average, maximum and minimum day and night, air and soil temperatures. This increase, the degree of which differed across seasons, was accompanied by a decline in RH and soil moisture content. Elevated temperatures led to a significant increase in combined, graminoid and shrub above-ground productivity (AGP) and a decrease in forb density, but in certain seasons only. Below-ground biomass production was unaffected by elevated temperatures.Conclusions: OTCs can simulate realistic increases of air temperature in subtropical grasslands. Graminoids and shrubs appear to benefit from elevated temperatures whilst forbs decrease in abundance, possibly through competition and/or direct physiological effects.

Publisher

South African National Biodiversity Institute

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3