A comparison of methods for assessing performance on the number line estimation task

Author:

Gross Susan I.,Gross Carol A.,Kim Dan,Lukowski Sarah L.,Thompson Lee A.,Petrill Stephen A.

Abstract

The debate about how to characterize performance on the number line estimation (NLE) task has yielded a diverse set of accuracy measures. These accuracy measures include characterizing performance by deviation from the correct score with percent absolute error (PAE), modeling the shape of responses via the logarithmic-to-linear shift, and modeling the strategy use via the cyclical power model (one and two cycle). In the present study, accuracy on a symbolic NLE task was examined using phenotypic and quantitative genetic analyses of all four measurements. Data were collected from a same-sex twin sample at ages 12 and 15 (N = 150 pairs) as part of the Western Reserve Reading and Math Project. Linear mixed-effect models were used to compare how well the four NLE accuracy measures predicted math achievement, as measured by the Woodcock Johnson-III Fluency, Calculation, and Applied Problems subtests, after cognitive ability was controlled. NLE accuracy measures were not related to Fluency or Calculation after cognitive ability was controlled, but all NLE accuracy measures were related to Applied Problems at 12 and 15 years old. Although theories about what the NLE task measures have been contested in the literature, the relationship between NLE accuracy and achievement did not differ regardless of the type of accuracy measure used. In addition, the estimates for genetic and environmental influences were proportionately similar across the NLE accuracy measures. Overall, all proposed measures of accuracy in the present sample appear appropriate for prediction of math achievement in adolescents.

Publisher

Leibniz Institute for Psychology (ZPID)

Subject

Applied Mathematics,Experimental and Cognitive Psychology,Numerical Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3