EEG decoding of finger numeral configurations with machine learning

Author:

Salehzadeh RoyaORCID,Rivera BrianORCID,Man KaiwenORCID,Jalili NaderORCID,Soylu FiratORCID

Abstract

In this study, we used multivariate decoding methods to study processing differences between canonical (montring and count) and noncanonical finger numeral configurations (FNCs). While previous research investigated these processing differences using behavioral and event-related potentials (ERP) methods, conventional univariate ERP analyses focus on specific time intervals and electrode sites and fail to capture broader scalp distribution and EEG frequency patterns. To address this issue a supervised learning classifier—support vector machines (SVM)—was used to decode ERP scalp distributions and alpha-band power for montring, counting, and noncanonical FNCs (for integers 1 to 4). The SVM was used to test whether the numerical information presented in FNCs can be decoded from the EEG data. Differences in the magnitude and timing of accuracy rates were used to compare the three types of FNCs. Overall, the algorithm was able to predict numerical information presented in FNCs beyond the random chance level accuracy, with higher rates for ERP scalp distributions than alpha-power. Montring had lower peak accuracy compared to counting and noncanonical configurations, likely due to automaticity in processing montring configurations leading to less distinct scalp distributions for the four numerical magnitudes (1 to 4). Paralleling the response time data, the peak decoding accuracy time for montring was earlier for montring (472 ms), compared to counting (577 ms) and noncanonical FNCs (604 ms). The results provide support for montring configurations being processed automatically, somewhat similar to number symbols, and provide additional insights for processing differences across different forms of FNCs. This study also highlights the strengths of decoding methods in EEG/ERP research on numerical cognition.

Publisher

Leibniz Institute for Psychology (ZPID)

Subject

Applied Mathematics,Experimental and Cognitive Psychology,Numerical Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3