A comparative study of machine learning methods for classifying ERP scalp distribution

Author:

Salehzadeh RoyaORCID,Soylu Firat,Jalili Nader

Abstract

Abstract Objective. Machine learning (ML) methods are used in different fields for classification and regression purposes with different applications. These methods are also used with various non-invasive brain signals, including Electroencephalography (EEG) signals to detect some patterns in the brain signals. ML methods are considered critical tools for EEG analysis since could overcome some of the limitations in the traditional methods of EEG analysis such as Event-related potentials (ERPs) analysis. The goal of this paper was to apply ML classification methods on ERP scalp distribution to investigate the performance of these methods in identifying numerical information carried in different finger-numeral configurations (FNCs). FNCs in their three forms of montring, counting, and non-canonical counting are used for communication, counting, and doing arithmetic across the world between children and even adults. Studies have shown the relationship between perceptual and semantic processing of FNCs, and neural differences in visually identifying different types of FNCs. Approach. A publicly available 32-channel EEG dataset recorded for 38 participants while they were shown a picture of an FNC (i.e., three categories and four numbers of 1,2,3, and 4) was used. EEG data were pre-processed and ERP scalp distribution of different FNCs was classified across time by six ML methods, including support vector machine, linear discriminant analysis, naïve Bayes, decision tree, K-nearest neighbor, and neural network. The classification was conducted in two conditions: classifying all FNCs together (i.e., 12 classes) and classifying FNCs of each category separately (i.e., 4 classes). Results. The support vector machine had the highest classification accuracy for both conditions. For classifying all FNCs together, the K-nearest neighbor was the next in line; however, the neural network could retrieve numerical information from the FNCs for category-specific classification. Significance. The significance of this study is in exploring the application of multiple ML methods in recognizing numerical information contained in ERP scalp distribution of different finger-numeral configurations.

Publisher

IOP Publishing

Subject

General Nursing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3