Latent profile analysis of human values: What is the optimal number of clusters?

Author:

Schmidt Mikkel N.,Seddig Daniel,Davidov Eldad,Mørup Morten,Albers Kristoffer Jon,Bauer Jan Michael,Glückstad Fumiko Kano

Abstract

Latent Profile Analysis (LPA) is a method to extract homogeneous clusters characterized by a common response profile. Previous works employing LPA to human value segmentation tend to select a small number of moderately homogeneous clusters based on model selection criteria such as Akaike information criterion, Bayesian information criterion and Entropy. The question is whether a small number of clusters is all that can be gleaned from the data. While some studies have carefully compared different statistical model selection criteria, there is currently no established criteria to assess if an increased number of clusters generates meaningful theoretical insights. This article examines the content and meaningfulness of the clusters extracted using two algorithms: Variational Bayesian LPA and Maximum Likelihood LPA. For both methods, our results point towards eight as the optimal number of clusters for characterizing distinctive Schwartz value typologies that generate meaningful insights and predict several external variables.

Publisher

Leibniz Institute for Psychology (ZPID)

Subject

General Psychology,General Social Sciences

Reference47 articles.

1. SchmidtM. N.SeddigD.DavidovE.MørupM.AlbersK. J.BauerJ. M.GlückstadF. K. (2021). Supplementary materials to: Latent profile analysis of human values: What is the optimal number of clusters? [Figures, Table, Code].PsychOpen GOLD. https://doi.org/10.23668/psycharchives.4948

2. Predictive evaluation of human value segmentations

3. Universalism, conservation and attitudes toward minority groups

4. An Introduction to Latent Variable Mixture Modeling (Part 1): Overview and Cross-Sectional Latent Class and Latent Profile Analyses

5. Clustering Methods: A History of k-Means Algorithms

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3