A Cyclosymmetric Beam Model and a Spring-Supported Annular Plate Model for Automotive Disc Brake Vibration

Author:

Boennen Dennis1,Walsh Stephen James1

Affiliation:

1. Department of Aeronautical and Automotive Engineering, Loughborough University, Leicestershire LE11 3TU, UK

Abstract

This paper discusses two simplified analytical models for automotive disc brake vibration which can be used to complement more complex finite element methods. The first model approximates the brake disc as a simple beam structure with cyclosymmetric boundary conditions. Since the beam model is a one-dimensional approach, modelling of the inner boundary condition of the brake disc, at the interface of the brake rotor and the central hat, is not possible. The second model, which is established based upon Kirchhoff’s thin plate theory, is presented in this paper in order to incorporate the vibrational deformation at the hat-disc interface. The mode shapes, natural frequencies, and forced response of a static disc are calculated using different inner boundary conditions. Among others, the spring-supported boundary condition is proposed and applied in this paper to make appropriate predictions. The predicted results are compared with measurements of the vibration characteristics of a solid brake disc mounted upon a static test rig. These comparisons demonstrate that the most appropriate model for the inner boundary condition of the measured brake disc is the proposed spring-supported inner boundary condition.

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3