Assessment of Two-Equation Turbulence Models and Validation of the Performance Characteristics of an Experimental Wind Turbine by CFD

Author:

Sagol Ece1,Reggio Marcelo1,Ilinca Adrian2

Affiliation:

1. Ecole Polytechnique de Montreal, 2500 Chemin de Polytechnique, Montréal, QC, Canada H3T 1J4

2. Université du Québec à Rimouski (UQAR), 300, Allée des Ursulines, Rimouski, QC, Canada G5L 3A1

Abstract

The very first step in the simulation of ice accretion on a wind turbine blade is the accurate prediction of the flow field around it and the performance of the turbine rotor. The paper addresses this prediction using RANS equations with a proper turbulence model. The numerical computation is performed using a commercial CFD code, and the results are validated using experimental data for the 3D flow field around the NREL Phase VI HAWT rotor. For the flow simulation, a rotating reference frame method, which calculates the flow properties as time-averaged quantities, has been used to reduce the time spent on the analysis. A basic grid convergence study is carried out to select the adequate mesh size. The two-equation turbulence models available in ANSYS FLUENT are compared for a 7 m/s wind speed, and the one that best represents the flow features is then used to determine moments on the turbine rotor at five wind speeds (7 m/s, 10 m/s, 15 m/s, 20 m/s, and 25 m/s). The results are validated against experimental data, in terms of shaft torque, bending moment, and pressure coefficients at certain spanwise locations. Streamlines over the cross-sectional airfoils have also been provided for the stall speed to illustrate the separation locations. In general, results have shown good agreement with the experimental data for prestall speeds.

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3