Turbulence Modeling of Iced Wind Turbine Airfoils

Author:

Martini FahedORCID,Ibrahim HusseinORCID,Contreras Montoya Leidy TatianaORCID,Rizk Patrick,Ilinca AdrianORCID

Abstract

Icing is a severe problem faced by wind turbines operating in cold climates. It is affected by various fluctuating parameters. Due to ice accretion, a significant drop in the aerodynamic performance of the blades’ airfoils leads to productivity loss in wind turbines. When ice accretes on airfoils, it leads to a geometry deformation that seriously increases turbulence, particularly on the airfoil suction side at high angles of attack. Modeling and simulation are indispensable tools to estimate the effect of icing on the operation of wind turbines and gain a better understanding of the phenomenon. This paper presents a numerical study to assess the effect of surface roughness distribution, along with the effect of two turbulence models on estimating wind turbine airfoils’ aerodynamic performance losses in the presence of ice. Aerodynamic parameter estimation was performed using ANSYS FLUENT, while ice accretion was simulated using ANSYS FENSAP-ICE. The results using the adopted modeling approaches and the simulation tools were compared with another numerical study and validated against experimental data. The validation process demonstrated the model’s accuracy when considering roughness distribution via the beading model available in ANSYS FENSAP-ICE. The two turbulence models examined (Spalart–Allmaras and k-ω SST) gave comparable results except for the drag at high angles of attack. The k-ω SST model was more efficient in replicating turbulence at high angles of attack, leading to higher accuracy in aerodynamic loss estimation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3