Abstract
Artificial neural networks have been shown to be able to approximate any continuous non-linear functions and have been used to build data base empirical models for non-linear processes. In this study, neural networks models were used to model the daily river flows or discharged in Langat River, Malaysia. Two possible ways of modelling were implemented which is by time series prediction and by the dynamics function of the system which include the past value of the discharged and also the rainfall in the input. The sum square error (SSE), residue analysis and correlation coefficient based on the observed and prediction output is chosen as the criteria of selection of which models is appropriate. It was found that the developed neural networks models using dynamics function provided satisfactory model discharges.
Subject
Applied Mathematics,General Engineering,General Chemical Engineering,General Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献